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Abstract—Cross-scene regression tasks such as congestion level
detection and crowd counting are useful but challenging. There
are two main problems which limit the performance of existing
algorithms. The first one is that no appropriate congestion
related feature can reflect the real density in scenes. Though
deep learning has been proved to be capable of extracting
high level semantic representations, it is hard to converge on
regression tasks since the label is too weak to guide the learning of
parameters in practice. Thus, many approaches utilize additional
information such as density map to guide the learning which
increases the effort of labeling. Another one is that most existing
methods are composed of several steps, for example feature ex-
traction and regression. Since the steps in pipeline are separated,
these methods face the problem of complex optimization. To
remedy it, a deep metric learning based regression method is
proposed to extract density related features, and learn better
distance measurement simultaneously. The proposed network is
trained end-to-end for better optimization. This model can be
used for crowdedness regression tasks including congestion level
detection and crowd counting. Extensive experiments confirm the
effectiveness of the proposed method.

Index Terms—Deep learning, metric learning, regression, con-
gestion detection, crowd counting

I. INTRODUCTION

CROSS-SCENE regression tasks such as congestion de-
tection and crowd counting [1] draw a lot of attention

because of their significance in real life. Since the world’s
population grows faster, the congested traffic and crowd of
people have become serious problems. Many accidents result-
ing from traffic jams or large crowd of people are causing
death every year. If the traffic status and crowd number can
be automatically monitored with video surveillance [2], such
accidents can be reduced a lot and the travel will be more
efficient.

There are many works concentrating on the two tasks.
Most works on congestion detection treat it as a classification
problem that distinguishes congested videos into 2-5 levels.
To detect congestion, these methods utilize the attributes of
moving objects in a video as features. First of all, the key
points or moving blobs are detected to represent the objects.
Then their speed is calculated to represent the speed of the
objects. With the number of moving objects and their speed
as features, the traffic jams can be detected. Crowd counting is
more popular than congestion detection since there are many
crowd counting datasets released for the community. Most of
them have accurate labels including the size of crowd and the
position of each person. These datasets promote the research
of crowd counting especially deep learning based methods.
Crowd counting is a typical regression problem which aims
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Fig. 1. The architecture of the proposed deep metric network. There are 3
convolutional layers and 2 fully connected layers. The metric learning loss
is used to guide the training of the network. Note that, the training of this
network is end-to-end. The learning of the feature representation and distance
measurement are simultaneous.

to estimate the crowd size through analyzing the features of
an image. In literature, many features based on size, shape,
edge, key point and texture are designed. Recently, some deep
learning based counting methods have shown great potential.
However, the deep networks are hard to converge without the
help of additional information such as density map.

Though the two tasks have been researched for years,
they are still very challenging and can’t be used in real
applications. Since most existing methods are composed of
two separate steps: feature extraction and regression, there are
two problems might limit the performance of existing systems.
The first one is the design of features. It is easy to construct
a feature for a detector to detect congestion level or count
people in only one scene. However, it is impossible to design
different detectors for different scenes. Thus, the cross scene
crowdedness analysis is more practical, which highly enhanced
the difficulties of feature design. For example, the holistic
features like texture might have large variations among dif-
ferent scenes, which makes the regressors hard to distinguish
different congestion levels or crowd sizes. Another problem is
that the feature extraction and regression are separated which
makes these models hard to optimize. It can be improved by
the works based on deep learning. In these methods, the end-
to-end training generates better optimized models and achieves
better performance than traditional methods. However, how
to efficiently train a deep network is still a challenge. Thus,
most previous works utilize additional information such as the
density map calculated by the position of persons to guide the
training procedure. But, the labeling of all persons in a crowd
scene is very time consuming. Thus, all the published datasets
contain only thousands of images. That is relatively small
compared to popular classification datasets which contain
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millions of images.
In this paper, a deep network is proposed to extract high-

level semantic representations. The training of the proposed
network is guided by metric learning. In literature, metric
learning [3] is used to learn a better distance measurement and
to improve the performance of the classification applications
like person re-identification [4] and image recognition [5].
Since metric learning is useful to better reflect the relationships
among samples, we believe that it will be effective to guide
the training of deep networks with local structural information.
The proposed method don’t need the density map for training.
The only label used for training is a number (congestion level
or crowd size). Note that the training of the proposed model
is end-to-end. Thus, the learning of the feature representation
and distance measurement is performed at the same time. In
this paper, we find that the metric learning is effective to guide
the training of the deep network. And more effective distance
measurement can also be learned with better features.

The contributions are summarized as follows:
1. A cross scene dataset is constructed for practical usage.

This is a very challenging dataset which contains differ-
ent illuminations, weathers, and road conditions. Some
low resolution videos collected from real surveillance
cameras are added into the dataset. That makes it closer
to real scenarios.

2. A deep metric learning method is proposed for crowd-
edness regression tasks. The proposed model is a uni-
fied model which can be trained end-to-end for better
optimization. This model can be effectively optimized
through local structural embedding.

3. Extensive experiments are conducted on two crowded-
ness regression tasks including congestion detection and
crowd counting. The experiments confirm that metric
learning is effective to guide the training of the deep
network. The proposed method is proved to be effective
for crowdedness regression.

The reminder of this paper is as follows. Related works of
congestion detection, crowd counting and metric learning are
reviewed in Section II. The definition of congestion and the
expanded dataset are described in Section III. The details of
the proposed deep metric learning method are elaborated in
Section IV. After the experimental results are reported and
discussed in Section V, the conclusion and future works are
presented in Section VI.

II. RELATED WORK

In this section, the relevant works of congestion level
detection, crowd counting and metric learning are reviewed.

A. Congestion Detection

The algorithms proposed for congestion detection can be
divided into two classes. The first class detects congestion by
analyzing the moving objects in videos. Another class is based
on the density related feature extraction and classification.

The first class of algorithms are based on a simple assump-
tion that more congested scenes have more moving objects.
Hu et al. [6] propose a method which utilizes moving blobs
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Density Occupancy Congestion

Fig. 2. The congestion is defined as space-time occupancy. The blue shadow
area is where the congestion is calculated.

to represent the moving objects. In detail, the moving blobs
are first detected by background subtraction algorithm [7].
Then, the speed of moving objects is represented by the
speed of the blobs which is calculated by Optical Flow [8].
Finally, the amount of blobs and their speed are utilized as
features and the fuzzy logical is used for the final decision.
Sobral et al. [9] further utilize key points to better represent
the moving objects. In this method, the number of moving
objects is represented by moving blobs which are detected
by background subtraction and the speed is represented by
the speed of key point which is calculated by Kanade-
Lucas-Tomasi (KLT) algorithm [10]. These methods rely on
the preprocessing algorithms like background subtraction and
tracking which limit the performance.

Another class of algorithms are focus on the design of
density related features [11] which can reflect congestion level
efficiently. Derpanis et al. [12] propose a Spatialtemporal Ori-
entation Analysis feature which encodes spatial and temporal
information simultaneously. Riaz et al. [13] propose to encode
motion information through the statistics of motion vectors.
Dallalzadeh et al. [14] propose a symbolic representation for
congestion detection. These methods don’t need preprocessing
algorithms which work well for a specific scene. However, the
accurate congestion level detection across different scenes is
still challenging.

B. Crowd Counting

Crowd counting algorithms can be divided into two cate-
gories: holistic and local. Holistic approaches take the whole
image as input to extract the features and then, a regression
algorithm is utilized to map the feature to a crowd number.
The local approaches take image patches as input and the final
crowd size is summarized by the number of people in these
patches.

Most holistic approaches utilize textures, foreground pixels
and edges as features. Marana et al. [15] propose a Gray Level
Cooccurrence Matrix (GLCM) based texture feature for crowd
density estimation. Regazzoni et al. [16] propose to count
crowd number through edge features. Cho et al. [17] propose
to utilize background subtraction techniques to better model
a human observer. These approaches are difficult to count the
crowd size accurately due to the large variation of the crowd
behavior.

The local approaches first divide the image into patches.
Then, the crowd sizes of patches are estimated and accumu-
lated as the final crowd size of the image. Chen et al. [18]
propose to count crowd size through the feature extraction
over the grid cells. Lempitsky et al. [19] propose a method in
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which the crowd sizes of pixels are estimated and summarized
to form the crowd size of an image. Fiaschi et al. [20] propose
to promote the regression by random forest. Chen et al. [21]
propose to combine the local features and global features
together. Recently, some deep learning based methods show
huge potentials on this task. Zhang at al. [22] propose to count
crowd size through a deep network which iteratively learns the
density map and the global number. Zhang et al. [23] propose
a multi-column convolutional neural network (MCNN) for
crowd counting. However, the deep learning based methods
always need additional information to guide the training of
deep networks.

C. Metric Learning

Metric learning is used to learn a better distance mea-
surement through training data. To achieve this, the aim of
most algorithms is to minimize the distance between samples
which come from the same class and maximize the distance
of samples from different classes.

Most metric learning methods are applied to classifica-
tion tasks such as person re-identification [24], [25], image
recognition [26], [27], and image retrieval [28]. Large Margin
Nearest Neighbor (LMNN) [29], [30] is proposed to improve
the performance of K nearest neighbors (KNN) classifica-
tion. Information-Theoretic Metric Learning (ITML) [31] is
proposed to regularize the distance matrix M to be closed
to a predefined prior distribution. Neighborhood Component
Analysis (NCA) [32] is a metric learning method which
aims to improve the performance of leave-one-out validation.
Discriminative Component Analysis (DCA) [33] is proposed
to exploit the negative constraint.

Metric learning can also be used for regression. Metric
Learning for Kernel Regression (MLKR) [34] is proposed to
improve the performance of kernel regression. Kernel Regres-
sion with Sparse Metric Learning (KRSML) [35] is proposed
to constrain the distance matrix M with a mixed (2,1)-norm.
Xiao et al. [36] propose to estimate the human age through
metric learning method.

Recently, some deep metric learning methods are proposed
for classification tasks with the development of deep learn-
ing. Hu et al. [37] propose to compare the similarity of
two face images through a deep metric learning model. Li
et al. [38] propose to learn a better distance measurement
with the additional community-contributed images under the
deep learning framework. Song et al. [39] propose a novel
structured objective function for deep metric learning.

III. THE DEFINITION AND DATASET

Since the congestion is not clearly defined, a unified and
accurate definition of congestion is desired. In this section, the
definition of congestion is first elaborated. Then, the details of
the proposed dataset is presented.

A. Definition

The congestion is defined as space-time occupancy as shown
in Figure 2. Generally speaking, the congestion level can be

measured by two aspects: density and occupancy [40]. The
density can only measure the congestion at a temporal point.
The occupancy can only measure the congestion at a spatial
point. The proposed congestion takes both spatial and temporal
information into consideration. It has several properties:

1. The definition is accurate. Compared to the traditional
methods which classify congestion videos into several
rough levels, the proposed definition is more accurate,
making it easier to predict the congestion status in the
future.

2. The definition is universal. With the proposed definition,
it is possible to compare the congestion level between
different scenes. Thus, different cameras can cooperate
together which makes congestion detection more prac-
tical.

3. The definition considers spatial and temporal informa-
tion simultaneously. Neither density nor occupancy can
reflect real traffic congestion status especially in com-
plicated urban scenes. Consider density and occupancy
together is more reasonable.

Formally, the proposed congestion is calculated as follows:

Ct =

∑
x,y,τ

f(x, y, τ)

w × l × t
, (1)

where Ct ∈ [0, 1) is the congestion level. w and l are the
width and length of the road. (x, y) indicates a point on the
road. t is a period of time and τ is a point of time in t.
f(x, y, τ) indicates whether a specific point located at (x, y, τ)
is occupied by a moving object. It is defined as:

f(x, y, τ) =

{
1, occupied
0, not occupied

. (2)

The proposed definition can reflect the proportion of vehi-
cles on a section of road in a period of time.

B. Dataset

Since existing datasets are not practical for real applications,
a new dataset called NWPU Congestion dataset is constructed.
The dataset contains 26 different scenes including day and
night, sunny and raining, and different road conditions. The
resolutions of videos in this dataset vary from 352 × 288 to
1920 × 1080. Note that different directions in one video are
treated as different scenes. Typical images in dataset are shown
in Figure 3.

The labeling of congestion is time-consuming based on
the definition since the calculation of congestion is pixel-
wise. Thus, a simplified implementation is proposed with an
assumption that the width of the vehicles and the width of
a lane are equal. With this assumption, the calculation of
congestion is reduced to:

Ct =

∑
y,τ
f(y, τ)

l × t
. (3)

In practice, the length of a lane is represented by a line along
it and the length of vehicles can also be represented by some
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Fig. 3. Typical images of the NWPU Congestion dataset. There are 26 different scenes in the dataset which contains different illumination and road condition.
There are sunny and rainy weathers in this dataset and 3 scenes are recorded at night. Different scenes contain different lane numbers including 2 3 4 5 and
complicated crossroads.

lines. Based on this, the perspective transformation is taken
into consideration since it makes the vehicles far from the
cameras smaller (shorter in length) in images. To remedy this,
the vehicles far from the camera should have higher weights
as shown in Figure 4 in which the color bar indicates the
different weights (red indicates high weight). To calculate the
weights of a scene, the width of road is employed since it is
also affected by the perspective transformation. Specifically,
the weights are inversely proportional to the widths of road
at different positions (larger width causes smaller weight). In
some particular scenes where the road boundary is not clear,
the widths of vehicles at different positions are used instead

of the widths of road.

IV. DEEP METRIC LEARNING FOR REGRESSION

To learn high-level density related features, the deep net-
work is utilized for feature extraction. However, the perfor-
mance of deep regression model without careful design is
rather poor in our experiments as shown in Section V. To
remedy this, metric learning is utilized to guide the learning of
the proposed deep model. The training of this network is end-
to-end, and the learning of features and distance measurement
are simultaneous. In this section, the basic of metric learning
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Frame The length of vehicles The length of road

Fig. 4. The left image is a typical frame in traffic video. The number at
the top-right is the congestion level. The middle image is the corresponding
labeling image. In this image, the white lines are used to represent the length
of vehicles. The white lines in the right image are used to represent the length
of road. The color bar is the weight of the pixels in lines.

for regression is first presented. Then, the details of deep
metric learning model are elaborated.

A. Metric Learning for Kernel Regression

Metric learning for kernel regression [34] aims to improve
the performance of kernel regression by learning a better
distance measurement between samples. The prediction of
kernel regression can be seen as the weighted sum of training
labels. The weights are decided by the distances between the
test sample and other samples. The distance measurement can
be learned by metric learning algorithms.

Formally, given training examples x1, x2, ..., xn and the
corresponding labels y1, y2, ..., yn, the prediction of xi is
written as:

ŷi =

∑
j 6=i yikij∑
j 6=i kij

, (4)

where kij is the kernel function indicating the weight between
sample xi and xj , and is computed as:

kij =
1

σ
√
2π

exp(−dij
σ

), (5)

where dij is the learned distance between two samples. Note
that δ is set as 1 for simplification. The distance between two
samples is calculated as:

dij = (f(xi)− f(xj))>M(f(xi)− f(xj))
= (f(xi)− f(xj))>L>L(f(xi)− f(xj))
= ‖L(f(xi)− f(xj))‖22,

(6)

where M is the distance matrix and L is the transformation
between feature space and learned space and f(x) indicates
the feature of xi. To learn the distance matrix M , the mean
squared error is used as the loss function:

L =
∑
i

(yi − ŷi)2. (7)

B. Deep Metric Learning Model

In previous works, the deep learning based methods need
additional information (e.g. density map) to guide the training.
However, the generation of density maps need large efforts to
label the human heads. Thus, a deep metric learning model
is proposed for weak labels (only congestion level or crowd

size) in this paper. This model merges the feature learning and
metric learning together into one network and the training is
end to end. To save the memory and accelerate the training
of the network, a small database is employed, and then the
locality is utilized to further accelerate the training.

The proposed deep network (DeepNet) contains 3 convolu-
tional layers and 2 fully connected layers. The first convolu-
tional layer has 32 3×3×3 filters and the second convolutional
layer has 64 3×3×32 filters. The last convolutional layer has
128 3× 3 × 64 filters. After each convolutional layer, a max
pooling layer is followed. The input of the network is 64×64
and the output of the network is a feature vector of length 20.
The input image is first resized to 64 × 64 and then fed into
the network to generate the representation.

Specifically, given an image x as an input, the output of the
first layer is:

h(1) = r(W (1)x+ b(1)), (8)

where W (1) is the projection matrix of the first layer and b(1)

is the bias vector. r(x) is the activation function defined in
Equation 13. Similarly, the output of the n-th layer is:

h(n) = r(W (n)h(n−1) + b(n)), (9)

where W (n) is the projection matrix of the n-th layer and b(n)

is the respective bias vector. In the end, the output of the final
layer (i.e., the 4-th layer) f(x) is the deep feature:

f(x) = h(4) = r(W (4)h(3) + b(4)). (10)

To effectively train the proposed network, we propose to
guide it by metric learning. That is to say, the training of the
network can be performed by minimizing the loss function
defined in Equation 7.

However, it is impossible to feed all the training images
to the network at the same time since the memory of GPU is
limited. Thus, a subset Xbase containing s samples is randomly
selected from the training set and serves as the database. The
input images are compared with the images in the database.
Then, Equation 4 is reduced to:

ŷi =

∑
xj∈Xbase

yikij∑
xj∈Xbase

kij
, (11)

With this improvement, the training of deep networks becomes
possible, and the performance does not drop through the
experiments in Section V.

Another problem in kernel regression is that the exponential
calculation is very time-consuming. To remedy this, k nearest
neighbors instead of all the samples in the database are
employed for the prediction. In particular, Equation 11 can
be further reduced to:

ŷi =

∑
j∈N(i) yikij∑
j∈N(i) kij

, (12)

where N(i) ∈ Xbase is the set of neighbors of the sample
xi. After k nearest neighbors are selected, the number of
exponential calculation is reduced from n to k where n is
the training number and k is the number of neighbors. That
accelerates the training of the proposed deep network since
k � n.
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The architecture of the proposed method is shown in Figure
1. This model is very effective to learn better features and
distance measurement at the same time, since the metric
learning can guide the network to learn better parameters.

Since the training set is relatively small, data augmentation
is utilized to expand the training data. Specifically, all images
are rotated -10 and 10 degrees respectively. Then, the size of
generated new training set is 2 times larger than the original
training set. Note that the testing set is not augmented.

Algorithm 1 Deep metric learning
Input: Xbase ∈ <n×64×64×3: the images in database

Ybase ∈ <n×1: the labels of Xbase

Xtrain ∈ <n×64×64×3: the training images
Ytrain ∈ <n×1: the labels of Xtrain

n ∈ <: the number of epochs
α ∈ <: the learning rate

1: Initialize W (i), b(i) according to Equation 14
2: // For each training epoch
3: for i = 1, 2, ..., n do
4: for [Xbatch, Ybatch] in [Xtrain, Ytrain] do
5: // Forward propagation
6: Calculate f(Xbase) through Equation 8-10
7: Calculate f(Xbatch) through Equation 8-10
8: // Compute the loss
9: Calculate L according to Equation 7

10: // Compute gradients
11: Calculate gradients ∂L

∂L , ∂L
∂W (i) and ∂L

∂b(i)

12: // Update parameters
13: L = L− α∂L∂L
14: W (i) =W (i) − α ∂L

∂W (i)

15: b(i) = b(i) − α ∂L
∂b(i)

16: end for
17: end for
Output: The deep model parameterized by W (i), b(i) and the

learned linear transformation L.

C. Implementation

In this section, the details about implementations of the
proposed method are elaborated. Note that, TensorFlow [41]
package is employed to develop the proposed model.

1) Activation Function: There are many activation func-
tions that can be used to define the output of a node. The
rectified linear unit (ReLU) is utilized as activation function
in this paper since ReLU is efficient to compute and propagate.
It is defined as follows:

f(x) = max(0, x). (13)

2) Initialization: The initialization is very important to the
gradient decent based training. Following the setting in [42], b
is initialized as 0 and w is initialized as a uniform distribution
as follows:

w v U

[
− 1√

d
,
1√
d

]
, (14)

where d is the input dimension.
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Fig. 5. The selection of the database size. The horizontal axis is the database
size, and the vertical axis is the mean squared error. Note that lower error
indicates better performance.

3) Optimization: Given training images Xtrain and the
corresponding labels Ytrain, mini-batch gradient descent is
utilized for optimization. In particular, we train the network
for n = 500 epochs with the learning rate α = 0.001. In each
iteration, a mini batch of data Xbatch and Ybatch is used for
training. The calculation of ∂L

∂w , ∂L
∂w and ∂L

∂w is performed by
symbolic differentiation provided by TensorFlow. The learning
procedure of this network can be summarized in Algorithm 1.

V. EXPERIMENTAL RESULTS

In this section, extensive experiments are conducted to
confirm the effectiveness of the proposed method.

A. Evaluation Metrics

Following the previous works [23], the mean squared error
(MSE) and the mean absolute error (MAE) are used for
evaluation which are defined as:

MSE =

√√√√ 1

N

N∑
1

(yi − ŷi)2, MAE =
1

N

N∑
1

|yi − ŷi|,

(15)
where N is the number of testing samples, yi and ŷi are the
label and the prediction of the i-th sample.

B. Congestion Level Detection

In this section, the experimental results on congestion level
detection are reported. The dataset and experimental settings
are first described. Then, the compared methods are presented
and the experimental results are discussed.

To demonstrate the effectiveness of the proposed method,
we compare it with the following methods:
• Random Guess: Randomly select a value from [0, 1) as

the congestion level.
• Texture+LR: The LBP feature [43] with a linear regres-

sion.
• Texture+ML: The LBP feature with metric learning for

kernel regression.
• DeepNet+LR: The proposed deep network with a simple

linear regression.
• DeepNet+LR (aug): DeepNet+LR with data augmenta-

tion.
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• DML: The proposed method presented in Section IV.
• DML (aug): The proposed method with data augmenta-

tion.
• AlexNet+ML (aug): The AlexNet [44] with metric learn-

ing for regression and data augmentation.

1) NWPU Congestion dataset: The first dataset is the cross
scene congestion level detection dataset described in Section
III. The training set contains 5585 samples and the testing set
contains 1372 samples.

In practice, s samples in the training set are randomly
selected as the database. The rest data in the training set is
split into two parts. 80% of them are used for training, and
20% of them are used for validation. Generally speaking, the
bigger s is, the better the performance achieves. However, to
balance the training size and the database size, s is set to 512
through our experiment as indicated in Figure 5. The number
of neighbors k is set to 20 through the experiment as shown in
Figure 6. In this figure, the performance is rather poor when
k is too small, but when k is lager than 20, the performance
becomes stable.

The experimental results are shown in Table I and Figure 7.
From the results, we can get the following conclusions. Deep
network is hard to converge with linear regression and weak
labels. Comparing Random Guess with DeepNet+LR, the
performance of deep learning with a simple linear regression
loss is similar to random guess. After data augmentation, the
result of DeepNet+LR (aug) does not increase a lot which
indicates that the linear regression with such weak labels can’t
guide the deep network to learn reasonable parameters. With
traditional features, the improvement of metric learning is
limited. Comparing Texture+LR with Texture+ML based on
traditional texture feature, metric learning is useful to improve
the performance. However, the improvement is very limited.
The proposed method is effective for congestion detection.
The proposed model with data augmentation (DML (aug))
achieves the best performance. That indicates that metric
learning can effectively guide the training of deep network, and
a large amount of data is essential to deep learning. The data
augmentation is essential to deep learning. Comparing Deep-
Net+LR and DML to DeepNet+LR (aug) and Deep+ML (aug),
the performance is increased a lot after data augmentation
which indicates that data augmentation is important to deep
learning. The training of deeper network is still challenging.

TABLE I
COMPARISON OF DIFFERENT METHODS FOR CONGESTION LEVEL

DETECTION ON NWPU CONGESTION DATASET.

Methods MSE MAE
Random Guess 0.434 0.356
Texture+LR 0.387 0.315
Texture+ML 0.385 0.316
DeepNet+LR 0.430 0.395
DeepNet+LR (aug) 0.397 0.367
DML 0.169 0.127
DML (aug) 0.145 0.109
AlexNet+ML (aug) 0.318 0.272
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Fig. 7. The visualization of the performance of congestion level detection.
The horizontal axis is frame number, and the vertical axis is the congestion
level.

However, AlexNet with metric learning and data augmentation
(AlexNet+ML (aug)) does not achieve good performance. The
reason might be that the training data is still not adequate.

2) traffic video database: To test the performance of the
proposed method under simple conditions, we conduct exper-
iments on a dataset containing only one scene. The traffic
video database [45] contains 254 video clips of traffic on the
highway. The resolution of these videos is 320 × 240. There
are different weathers and light conditions in the videos. This
dataset contains only one scene (i.e., all videos are recorded by
one camera with the same angle). It is designed for congestion
video classification in which the videos are split into 3 levels:
light, medium and heavy. To turn it into a regression task,
the congestion threshold of each frame is set as 0.165, 0.5,
0.83 respectively for the light, medium and heavy class as
shown in Figure 8. Similar to the experimental settings in
NWPU Congestion dataset, the size of database is set as 512.
80% of samples are used for training and 20% of samples are
used for testing.

The experimental results can be seen in Table II and Figure
9. From the results, we can get the following conclusions.
The congestion detection in one scene is relatively easy.
Intuitively, the prediction is very accurate as shown in Figure
9. Quantitatively, comparing Random Guess to Texture+LR, a
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0 0.5 10.165 0.33 0.66 0.83

Light Medium Heavy

Fig. 8. Similar to the NWPU Congestion dataset, the congestion level varies
from [0, 1). We split it into three parts and the mean value of each part is
used as the congestion level of the class.

TABLE II
COMPARISON OF DIFFERENT ARCHITECTURES FOR CONGESTION

DETECTION ON TRAFFIC VIDEO DATASET.

Methods MSE MAE
Random Guess 0.4190 0.3414
Texture+LR 0.0803 0.0313
Texture+ML 0.0841 0.0325
DeepNet+LR 0.2908 0.2420
DeepNet+LR(aug) 0.2810 0.1922
DML 0.0555 0.0236
DML(aug) 0.0289 0.0029
AlexNet+ML(aug) 0.2149 0.1718

simple texture feature with a linear regression achieves huge
improvement. The deep network is still hard to converge with
linear regression and week labels under simple conditions.
Comparing Texture+LR to DeepNet+LR, the performance of
the traditional feature outperforms the deep network which
indicates that the learning of deep networks is hard. The
proposed method is effective under simple conditions. The best
performance is achieved by the proposed method (DML (aug))
which confirms that the metric learning is useful to guide the
training of deep network.

C. Crowd Counting

In this section, the experimental results about crowd count-
ing are reported. The dataset and the experimental settings are
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Fig. 9. The visualization of the performance of congestion level detection on
traffic video dataset. The horizontal axis is the frame number, and the vertical
axis is the congestion level.
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Fig. 10. The testing images are split into 10 groups according to the crowd
size. The horizontal axis is the group ID and the vertical axis is the absolute
counts.

first presented and the results are then discussed.
1) The WorldExpo dataset: The first dataset used for crowd

counting is the WorldExpo dataset [22] which contains 3980
labeled frames. These frames come from 108 different surveil-
lance cameras, the resolution of which is 576 × 720. In this
experiment, 24 128× 128 patches are extracted first and then
resized to 64 × 64 for training. Similarly, the testing image
is split into 24 patches and the summarized number of these
patches is the final counting.

The first comparison method is local binary patterns (LBP)
[46] and ridge regression (LBP+RR). The second method
is proposed by Fiaschi et al. [20] in which random forest
is utilized for prediction. Two deep learning based counting
methods proposed by Zhang et al. [22] and Zhang et al.
[23] are also included for comparison. Note that, the deep
learning based methods utilize additional information to guide
the training of networks.

The results of this experiment can be seen in Table III and
Figure 10. From the results, we get the following conclusions.
The proposed method is effective for crowd counting. The
proposed method outperforms the other ones (LBP+RR and
Fiaschi et al. [20]) which doesn’t use additional information
for training. It confirms that the proposed method is effective
to count the crowd size. The high-level feature extracted
by deep networks is effective for crowd counting. The deep
learning based methods (DML, Zhang et al. [22] and Zhang
et al. [23]) outperforms traditional methods (LBP+RR and
Fiaschi et al. [20]) which indicates that the high-level semantic
features are useful for crowd counting. The deep networks
can be effectively trained with additional information. The
deep learning methods (Zhang et al. [22] and Zhang et al.
[23]) with additional information (i.e., density map) achieve
top performance. However, it is hard to apply these methods to
large-scale data since the labeling of the additional information
(human heads in crowd) is very time-consuming. The counting
of large crowd number is challenging. As shown in Figure
10, the error of the large crowd number is higher than the
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TABLE III
COMPARISON OF DIFFERENT METHODS FOR CROWD COUNTING ON WORLDEXPO DATASET. NOTE THAT THE DATA AUGMENTATION IS NOT UTILIZED IN

THIS EXPERIMENT AND THE MAE IS USED AS THE METRIC FOR EVALUATION. THE BEST RESULTS WITH AND WITHOUT ADDITIONAL INFORMATION ARE
INDICATED IN BOLD.

Methods Scene 1 Scene 2 Scene 3 Scene 4 Scene5 Average Additional info
LBP+RR 13.6 59.8 37.1 21.8 23.4 31.0 No
Fiaschi et al. [20] 2.2 87.3 22.2 16.4 5.4 26.7 No
DML 5.5 27.9 18.3 13.9 6.6 14.5 No
Zhang et al. [22] 2.0 29.5 9.7 9.3 3.1 10.7 Yes
Zhang et al. [23] 3.4 20.6 13.0 13.0 8.0 11.6 Yes

TABLE IV
COMPARISON OF DIFFERENT METHODS FOR CROWD COUNTING ON SHANGHAI TECH DATASET. NOTE THAT THE DATA AUGMENTATION IS NOT UTILIZED

IN THIS EXPERIMENT. THE BEST RESULTS WITH AND WITHOUT ADDITIONAL INFORMATION ARE INDICATED IN BOLD.

Part A Part B Average
Methods MAE MSE MAE MSE MAE MSE Additional info
LBP+RR 303.2 371.0 59.1 81.7 148.3 233.5 No
DML 106.0 155.9 29.9 53.6 57.7 103.5 No
Zhang et al. [22] 181.8 277.7 32.0 49.8 86.7 172.5 Yes
Zhang et al. [23] 110.2 173.2 26.4 41.3 57.0 109.8 Yes

small number which indicates that the crowd counting is very
challenging in large crowd scenarios.

2) The Shanghai Tech dataset: The shanghai Tech dataset
[23] is a challenging dataset containing two parts of images.
The first part (Part A) is the crowd images collected from
Internet and the second part (Part B) is taken from the
busy street in Shanghai. This dataset contains 1198 labeled
images. Part A contains 482 images and Part B contains 716
images. The crowd density varies significantly in this dataset.
Following the experimental settings in [23], 300 images in
Part A are used for training and the rest are used for testing,
and 400 images in Part B are used for training and the rest
for testing. Similar to the WorldExpo dataset, the images are
first split into patches for training and then the patches are
accumulated as a whole image for testing.

The first comparison method is LBP feature with a ridge
regressor. The other two methods are deep learning based
algorithms [22], [23] which utilize additional information for
training.

The results can be seen in Table IV and Figure 11 which
are very similar to the results on the WordExpo dataset. The
proposed method (DML) outperforms the traditional method
(LBP+RR) and achieves comparable result compared to other
deep learning methods (Zhang et al. [22] and Zhang et al.
[23]), especially in Part A which indicates that the proposed
model can be effectively optimized for crowd counting. The
visualization of the Part A and Part B is shown in Figure 11.
In this figure, the prediction of Part B is more accurate than
Part A which indicates that the background variation is a big
challenge for crowd counting.
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Fig. 11. The testing images of Part A and Part B are split into 10 groups
according to the crowd size. The horizontal axis is the group ID and the
vertical axis is the absolute counts.

VI. CONCLUSION

In this paper, a deep metric learning based method is
proposed for crowdedness regression tasks, such as congestion
detection and crowd counting. To extract high-level semantic
features, a deep network is proposed. However, the training
of such a network is very challenging with weak labels. To
remedy this, we propose to guide the training of the network
with metric learning since it is capable of embedding local
structural information. The proposed deep metric learning
model is trained end-to-end for better optimization. In this
procedure, the learning of better representations and distance
measurement are simultaneous. The experiments confirm that
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the metric learning is effective to guide the training of deep
network and with high-level semantic features, the metric
learning shows more improvement than traditional features.

However, we find that the deeper network is still hard to
train even guided with metric learning. Thus, we will further
expand our dataset and try to find more effective ways to
utilize deeper networks in the future.
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